4 votes

How scientists could stop the next pandemic before it starts

1 comment

  1. skybrian
    Link
    From the article: [...] [...] [...] [...]

    From the article:

    According to some infectious-disease experts, the scientific tools already exist to create a kind of viral-defense department — one that would allow us to pursue a broad range of vital global projects, from developing vaccines and drugs that work against a wide range of pathogens to monitoring disease hot spots and identifying potential high-risk viruses, both known and unknown. What’s lacking is resources. “We really did miss the wake-up call,” Daszak says. “The alarm went off with SARS, and we hit the snooze button. And then we hit it again with Ebola, with MERS, with Zika. Now that we’re awake, we should think about where to go from here.”

    [...]

    Panviral drugs — ones that work broadly within or across virus families — are harder to make than broad-spectrum antibiotics, largely because viruses work by hijacking the machinery of our cells, harnessing their key functions in order to replicate. A drug that blocks one of those functions (e.g., the production of a particular protein) is often also disrupting something that our own cells need to survive. Researchers have begun to find ways around that problem, in part by refining which process a drug targets. But they’ve also begun to test existing drugs against a wider array of viruses. It was in just such a follow-up screen that Gilead discovered that remdesivir, originally developed to treat hepatitis C and later tried against Ebola, might be effective against coronaviruses. (Favipiravir, an influenza drug developed in Japan, is another broad-spectrum candidate.) The reason drugs sometimes work in extremely different diseases — in, say, Ebola and coronaviruses and flu — is that they block some common mechanism. Remdesivir and favipiravir, for instance, each mimics a key building block in a virus’s RNA, which, when inserted, keeps the virus from replicating.

    [...]

    Panviral vaccines are also becoming a real possibility. In recent years, a number of prospective universal flu vaccines have been developed that work by targeting not the virus’s globular head, which mutates easily, but its stalk, which barely mutates at all. (As Daszak noted, if this outbreak had been a flu rather than a coronavirus, we’d be in much better shape.) Another new approach, mRNA vaccines, works by exploiting messenger RNA — a kind of courier that communicates the genetic instructions for making proteins — to drive an immune response. The advantages of mRNA vaccines are potentially enormous, in part because they can be made very quickly (one month instead of six for a known strain; two to three months for a novel virus) but also because they can be made on a vast scale (billions of doses, compared with the 100,000 doses that were needed for the Ebola epidemic). They’re extremely adaptable too: If a researcher can develop a platform that works with this coronavirus, it’s easy to redesign it for the next one. (One mRNA start-up, Moderna, set a drug-industry record by creating a prospective Covid-19 vaccine, mRNA-1273, in just 42 days, using the virus’s genetic sequence. The drug is currently in Phase 1 clinical trials to be safety-tested on healthy volunteers.) And while no mRNA vaccines have yet received F.D.A. approval, Covid-19 will almost certainly change that.

    But for years, Racaniello notes, the real obstacle to making panviral drugs or vaccines has been that no one was willing to pay for their development. For pharmaceutical companies, he points out, panviral vaccines are simply a terrible business proposition: Companies have to spend hundreds of millions of dollars to develop a shot that people will get once a year at most — and not at all in years when no particular disease is ascendant.

    [...]

    The other problem is that there’s currently no way to quickly test for most viruses, which is essential if a doctor wants to establish a diagnosis and prescribe the right drug. As a result, Racaniello says, it’s “a chicken-and-egg situation: No one is developing drugs for these viruses because there’s no way to test for them. And no one is developing tests, because there aren’t any drugs to prescribe.”

    [...]

    Governments, meanwhile, have been reluctant to fund panviral development — both because it’s expensive and because the rewards can feel remote, especially as many diseases originate in other countries. “We don’t prevent well; we respond well,” Daszak notes. “Remember when Obama got $5 billion for the Ebola outbreak in West Africa, and U.S. troops went to help fix the problem? That’s heroic. How heroic is it, three years before Ebola, to say, ‘We’re going to fund a massive program in West Africa to help these poor countries get ready in case an outbreak happens?’ He’d be laughed out of the room!”

    Global nonprofits like the Gates Foundation have tried to step into this funding void. The foundation has supported GAVI, an international alliance that helps vaccinate children in poor countries and spearheaded a fund to fight H.I.V., tuberculosis and malaria worldwide. Mark Suzman, the chief executive of the Gates Foundation, says that when governments and companies do pull together, the focus is often on projects like these rather than “forward-looking” issues like pandemics or climate change. One exception, he says, has been CEPI, the Coalition for Epidemic Preparedness Innovations, an NGO that was founded in 2017 to coordinate and finance the development of new vaccines for diseases that might lead to a pandemic. When it started, Suzman told me, CEPI was a low-profile project: “It was really a response to the Ebola epidemic of 2014 and 2015. Now, of course, it looks incredibly farsighted.”

    1 vote