This blog post is rather disorganized, but here are some good bits from it: … … … … … … In the appendices there are long lists of stories about Facebook, Google, Amazon, Microsoft, Stripe, Uber,...
This blog post is rather disorganized, but here are some good bits from it:
Coming back to the argument that huge companies have the most resources to spend on moderation, spam, anti-fraud, etc., vs. the reality that they choose to spend those resources elsewhere, like dropping $50B on the Metaverse and not hiring 1.6 million moderators and support staff that they could afford to hire, it makes sense to look at how much effort is being expended. Meta's involvement in Myanmar makes for a nice case study because Erin Kissane wrote up a fairly detailed 40,000 word account of what happened. The entirety of what happened is a large and complicated issue (see appendix for more discussion) but, for the main topic of this post, the key components are that there was an issue that most people can generally agree should be among the highest priority moderation and support issues and that, despite repeated, extremely severe and urgent, warnings to Meta staff at various levels (engineers, directors, VPs, execs, etc.), almost no resources were dedicated to the issue while internal documents indicate that only a small fraction of agreed-upon bad content was caught by their systems (on the order of a few percent). I don't think this is unique to Meta and this matches my experience with other large tech companies, both as a user of their products and as an employee.
…
A reason this comes back to being an empirical question is that all of this talk about how economies of scale allows huge companies to bring more resources to bear on the problem on matters if the company chooses to deploy those resources. There's no theoretical force that makes companies deploy resources in these areas, so we can't reason theoretically. But we can observe that the resources deployed aren't sufficient to match the problems, even in cases where people would generally agree that the problem should very obviously be high priority, such as with Meta in Myanmar. Of course, when it comes to issues where the priority is less obvious, resources are also not deployed there.
…
It is actually true that, if you, an engineer, dig into the support queue at some giant company and look at people appealing bans, almost all of the appeals should be denied. But, my experience from having talked to engineers working on things like anti-fraud systems is that many, and perhaps most, round "almost all" to "all", which is both quantitatively and qualitatively different. Having engineers who work on these systems believe that "all" and not "almost all" of their decisions are correct results in bad experiences for users.
For example, there's a social media company that's famous for incorrectly banning users (at least 10% of people I know have lost an account due to incorrect bans and, if I search for a random person I don't know, there's a good chance I get multiple accounts for them, with some recent one that has a profile that reads "used to be @[some old account]", with no forward from the old account to the new one because they're now banned). When I ran into a senior engineer from the team that works on this stuff, I asked him why so many legitimate users get banned and he told me something like "that's not a problem, the real problem is that we don't ban enough accounts. Everyone who's banned deserves it, it's not worth listening to appeals or thinking about them". Of course it's true that most content on every public platform is bad content, spam, etc., so if you have any sort of signal at all on whether or not something is bad content, when you look at it, it's likely to be bad content. But this doesn't mean the converse, that almost no users are banned incorrectly, is true.
…
In my social circles, many people have read James Scott's Seeing Like a State, which is subtitled How Certain Schemes to Improve the Human World Have Failed. A key concept from the book is "legibility", what a state can see, and how this distorts what states do. One could easily write a highly analogous book, Seeing like a Tech Company about what's illegible to companies that scale up, at least as companies are run today. A simple example of this is that, in many video games, including ones made by game studios that are part of a $3T company, it's easy to get someone suspended or banned by having a bunch of people report the account for bad behavior. What's legible to the game company is the rate of reports and what's not legible is the player's actual behavior (it could be legible, but the company chooses not to have enough people or skilled enough people examine actual behavior); and many people have reported similar bannings with social media companies. When it comes to things like anti-fraud systems, what's legible to the company tends to be fairly illegible to humans, even humans working on the anti-fraud systems themselves.
…
To get an idea of the difference in scale, HN "hellbans" spammers and people who post some kinds of vitriolic comments. Most spammers don't seem to realize they're hellbanned and will keep posting for a while, so if you browse the "newest" (submissions) page while logged in, you'll see a steady stream of automatically killed stories from these hellbanned users. While there are quite a few of them, the percentage is generally well under half. When we looked at a "mid-sized" big tech company like Twitter circa 2017, based on the public numbers, if spam bots were hellbanned instead of removed, spam is so much more prevalent that killed spam is all you'd see if you were able to see it. And, as big companies go, 2017-Twitter isn't that big. As we also noted, the former PM of FB ads targeting explained that numbers as low as 100M are in the "I can't count that low" range, too small to care about; to him, basically a rounding error. The non-linear difference in difficulty is much worse for a company like FB or Google. The non-linearity of the difficulty of this problems is, apparently, more than a match for whatever ML or AI techniques Zuckerberg and other tech execs want to brag about.
…
If you ever talk to people who work in support at a company that really cares about support, it's immediately obvious that they operate completely different from typical big tech company support, in terms of process as well as culture. Another way you can tell that big companies don't care about support is how often big company employees and execs who've never looked into how support is done or could be done will tell you that it's impossible to do better.
When you talk to people who work on support at companies that do actually care about this, it's apparent that it can be done much better. While I was writing this post, I actually did support at a company that does support decently well (for a tech company, adjusted for size, I'd say they're well above 99%-ile), including going through the training and onboarding process for support folks. Executing anything well at scale is non-trivial, so I don't mean to downplay how good their support org is, but the most striking thing to me was how much of the effectiveness of the org naturally followed from caring about providing a good support experience for the user. A full discussion of what that means is too long to include here, so we'll look at this in more detail another time, but one example is that, when we look at how big company support responds, it's often designed to discourage the user from responding ("this review is final") or to justify, putatively to the user, that the company is doing an adequate job ("this was not a purely automated process and each appeal was reviewed by humans in a robust process that ... "). This company's training instructs you to do the opposite of the standard big company "please go away"-style and "we did a great job and have a robust process, therefore complaints are invalid"-style responses. For every anti-pattern you commonly see in support, the training tells you to do the opposite and discusses why the anti-pattern results in a bad user experience. Moreover, the culture has deeply absorbed these ideas (or rather, these ideas come out of the culture) and there are processes for ensuring that people really know what it means to provide good support and follow through on it, support folks have ways to directly talk to the developers who are implementing the product, etc.
…
A meta point here is that you absolutely cannot trust vaguely plausible sounding arguments from people on this since they virtually all fall apart when examined in practice. It seems quite reasonable to think that a business the size of reddit would have more sophisticated anti-spam systems than HN, which has a single person who both writes the code for the anti-spam systems and does the moderation. But if you try the most naive and simplistic attack possible on reddit, you'll find that it works and it's easy to get material onto the front page. I know many people who've tried the exact same thing for HN and all of those naive attempts have been foiled by HN's voting ring detector. I'm not saying you can't defeat HN's system, but just doing the most naive possible attack doesn't work on HN, whereas it does for reddit and does for Facebook. And likewise for support, where once you start talking to people about how to run a support org that's good for users, you immediately see that the most obvious things have not been tried by big tech companies.
In the appendices there are long lists of stories about Facebook, Google, Amazon, Microsoft, Stripe, Uber, Cloudflare, and shorter lists for other companies.
This blog post is rather disorganized, but here are some good bits from it:
…
…
…
…
…
…
In the appendices there are long lists of stories about Facebook, Google, Amazon, Microsoft, Stripe, Uber, Cloudflare, and shorter lists for other companies.