• Activity
  • Votes
  • Comments
  • New
  • All activity
  • Showing only topics in ~science with the tag "physics". Back to normal view / Search all groups
    1. A layperson's introduction to quantisation and spin, part 1

      Introduction I want to give an introduction on several physics topics at a level understandable to laypeople (high school level physics background). Making physics accessible to laypeople is a...

      Introduction

      I want to give an introduction on several physics topics at a level understandable to laypeople (high school level physics background). Making physics accessible to laypeople is a much discussed topic at universities. It can be very hard to translate the professional terms into a language understandable by people outside the field. So I will take this opportunity to challenge myself to (hopefully) create an understandable introduction to interesting topics in modern physics. To this end, I will take liberties in explaining things, and not always go for full scientific accuracy, while hopefully still getting the core concepts across. If a more in-depth explanation is wanted, please ask in the comments and I will do my best to answer.

      Previous topics

      Spintronics
      Quantum Oscillations

      Today's topic

      Today's topic will be quantisation, explained through the results of the Stern-Gerlach experiment which was first performed in 1922. This topic treats a much more fundamental concept of quantum physics than my previous topics.

      What is the Stern-Gerlach experiment?

      In 1922 physicists Stern and Gerlach set up an experiment where they shot silver atoms through a magnetic field, the results of this experiment gave conclusive support for the concept of quantisation. I will now first explain the experiment and then, using the results, explain what quantisation is. If you would rather watch a video on the experiment, wikipedia provided one here, it can be watched without sound. Note that I will dive a bit deeper into the results than this video does.

      The experiment consists of two magnets, put on top of each other with a gap in the middle. The top magnet has its north pole facing the gap, the bottom magnet has its south pole facing the gap. See this illustration. Now we can shoot things through the gap. What do we expect would happen? Let's first shoot through simple bar magnets. Depending on how its poles are oriented, it will either bend downwards, upwards or not at all. If the bar magnet's north pole is facing the top magnet, it will be pushed downwards (because then north is facing north). If the bar magnet's south pole is facing the top magnet, it will instead be pushed upwards. If the bar magnet's poles are at a 90 degree angle to the two magnets it will fly straight through, without bending. Lastly, if the bar magnet's poles are at any other angle, say 45 degrees, it will still bend but less so. If we send through a lot of magnets, all with a random orientation, and measure how much they got deflected at the other side of the set-up we expect to see a line, see 4 in the illustration.

      Now we'll send through atoms, Stern and Gerlach chose silver atoms because they were easy to generate back in 1922 and because they have so-called spin, which we will get back to shortly. We send these silver atoms through in the same way we sent through the bar magnets; lots of them and all of them with a random orientation. Now what will happen? As it turns out all the atoms will either end up being deflected all the way up or all the way down, with nothing in between. 50% will be bent upwards, 50% downwards. So silver atoms seem to respond as if they were bar magnets that either bend maximally up or maximally down. In the illustration this is labeled 5.

      If we were to take only the silver atoms that bent upwards and sent them through the experiment again, all of them would bend upwards again. They seem to remember if they previously went up or down rather than just deciding on the spot each time if they go up or down. What model can we think of that would explain this behaviour? The silver atoms must have some property that will make them decide to bend up or down. Let's call this property spin, and say that if the silver atoms chose to bend up they have spin up, if they chose to bend down they have spin down. It seems that these are the only two values spin can have, because we see them bend either maximally up or maximally down. So we can say the spin is quantised; it has two discrete values, up or down, and nothing in between.

      Conclusion

      We have found a property of atoms (and indeed other particles like electrons have spin too) that is quantised. This goes against classical physics where properties are continuous. This shows one of the ways in which physics at the smallest scales is fundamentally different from the physics of everyday life.

      Next time

      Next time we will investigate what happens when we rotate the angle of the magnets used in the experiment. This will lead us to discover other fundamental aspects of physics and nature, quantum superpositions and the inherent randomness of nature.

      EDIT: part 2 is now up here.

      Feedback

      As discussed in the last post, I am trying something different for this post. Talking about more fundamental quantum physics that was discovered 100 years ago rather than modern physics. Did you like it? Let me know in the comments!

      30 votes
    2. A layperson's introduction to quantum oscillations

      Introduction and motivation In an effort to get more content on Tildes, I want to try and give an introduction on several 'hot topics' in condensed matter physics at a level understandable to...

      Introduction and motivation

      In an effort to get more content on Tildes, I want to try and give an introduction on several 'hot topics' in condensed matter physics at a level understandable to laypeople (high school level physics background). Making physics accessible to laypeople is a much discussed topic at universities. It can be very hard to translate the professional terms into a language understandable by people outside the field. So I will take this opportunity to challenge myself to (hopefully) create an understandable introduction to interesting topics in modern physics. To this end, I will take liberties in explaining things, and not always go for full scientific accuracy, while hopefully still getting the core concepts across. If a more in-depth explanation is wanted, please ask in the comments and I will do my best to answer.

      Previous topics

      Spintronics

      Why has it been 100 days since the last post?

      I had a different topic planned as a second post, however it turned out I had to explain a lot more concepts that I anticipated so that it would no longer fit this format. Then I got busy. Now I finally found a topic I think I can do justice in this format.

      Today's topic

      Today's topic will be quantum oscillations.

      What are quantum oscillations?

      Quantum oscillations are periodic fluctuations in some materials' properties when it is exposed to a strong magnet. As the name suggests, this effect arises from quantum physics. Nevertheless, I think it's relatively easy to give a feel on how it works. In the rest of this post I will focus on one kind of quantum oscillation, the oscillation of a material's resistance (with the very fancy name Shubnikov-de Haas oscillations), because electrical resistance is a concept most people are familiar with. However, there are many other material properties that fluctuate similarly.

      What do quantum oscillations look like?

      Let's start from the basics, electrical resistance. Electrical resistance tells you how hard it is for an electrical current to flow through a material. Related to this is conductance, which instead tells you how easy it is for a current to flow through a material (so it is the inverse of the resistance). Now, something funny happens to some metals' conductance when you expose them to a strong magnet.

      Let's think for a moment on what we expect would happen. Would the conductivity be affected by the magnet? Perhaps a stronger magnet would increase the conductivity, or reduce it. What we most certainly wouldn't expect to happen is for the conductivity to go up and down as we increase the strength of the magnet we aimed at the material. Yet, this is exactly what happens. In this picture we see the conductivity (expressed on the vertical axis) plotted against the magnetic field (expressed on the horizontal axis). The conductivity is going up and down like crazy!

      Why is this happening?

      One of quantum physics core principle is quantisation (who'd have thought). And as it turns out, this quantisation is at the core of this behaviour. For the purpose of this post, quantisation can be thought of as energies at which the electrons are allowed to have.

      Normally, when electrons are in a metal, there are no real restrictions on what energy they are allowed to have. Some electrons will not have a lot of energy and won't move, other electrons will have a lot of energy and be able to move freely around the metal.

      However, when metals are put in a strong magnetic field the energies of the low energy electrons are allowed to have changes drastically. The electrons are only allowed to be at certain energies, with a wide gaps in between these energies. Crucially, the exact values of these energies change with the strength of the magnet.

      This means that at some magnet strengths, the allowed low-energy energies will nicely line up with the energies the free-flowing electrons have. This means some of those electrons will interfere with the free flowing electrons, making it harder for them to flow freely*. This interference in electron flow means less conductance! Then, when we change the magnetic field so that the energies are no longer aligned, the free flowing electrons no longer get caught and will be able to move freely, so that the conductivity goes up again. This pattern becomes more pronounced as the magnetic field strength increases.

      What is it good for?

      These oscillations were first noticed in bismuth by Shubnikov and de Haas in the year 1930. It was direct evidence for the quantum mechanics underlying nature. These days quantum oscillations are a popular method to extract information on a metals, alloys and semimetals' properties. These techniques have been used to, for example, further our understanding of high temperature superconductivity.

      Sources

      D Shoenberg - Magnetic Oscillations in Metals (1984)

      *more technically: the probability of scattering is proportional to the number of states into which the electron can be scattered, which is given by the number of available states near the energy surface of the material.

      32 votes
    3. A layperson's introduction to spintronics

      Introduction and motivation In an effort to get more content on Tildes, I want to try and give an introduction on several 'hot topics' in semiconductor physics at a level understandable to...

      Introduction and motivation

      In an effort to get more content on Tildes, I want to try and give an introduction on several 'hot topics' in semiconductor physics at a level understandable to laypeople (high school level physics background). Making physics accessible to laypeople is a much discussed topic at universities. It can be very hard to translate the professional terms into a language understandable by people outside the field. So I will take this opportunity to challenge myself to (hopefully) create an understandable introduction to interesting topics in modern physics. To this end, I will take liberties in explaining things, and not always go for full scientific accuracy, while hopefully still getting the core concepts across. If a more in-depth explanation is wanted, please ask in the comments and I will do my best to answer.

      Today's topic

      I will start this series with an introduction to spintronics and spin transistors.

      What is spintronics?

      Spintronics is named in analogy to electronics. In electronics, the flow of current (consisting of electrons) is studied. Each electron has an electric charge, and by pulling at this charge we can move electrons through wires, transistors, creating modern electronics. Spintronics also studies the flow of electrons, but it uses another property of the electrons, spin, to create new kinds of transistors.

      What are transistors?

      Transistors are small electronic devices that act as an on-off switch for current. We can flip this on-off switch by sending a signal to the transistor, so that the current will flow. Transistors are the basis for all computers and as such are used very widely in modern life.

      What is spin?

      Spin arises from quantum mechanics. However, for the purpose of explaining spin transistors we can think of an electron's spin as a bar magnet. Each electron can be thought of as a bar magnet that will align itself to a nearby magnetic field. Think of it as a compass (the electron) aligning itself to a fridge magnet when it's held near the compass.

      What are spin transistors and how do they work?

      Spin transistors are a type of transistor whose on-off switch is created by magnets. We take two bar magnets, whose north poles are pointed in the same way, and put them next to each other, leaving a small gap between them. This gap is filled with a material through which the electrons can move. Now we connect wires to the big bar magnets and let current (electrons!) flow through both magnets, via the gap. When the electrons go through the first magnet, their internal magnets will align themselves to the big bar magnet. However, once they are in the gap the electrons' internal magnets will start rotating and no longer point in the same direction as the big bar magnets. So that when the electrons arrive at the second magnet, they will be repelled just like when you try to push the north poles of two magnets together. This means the current will not flow, and the device is off! So, how do we get it to turn on?

      By exposing the gap to an electric field, we can control the amount of rotation the electrons experience (this is called the Rashba effect). If we change the strength of this electric field so that the electrons will make exactly one full rotation while crossing the gap, then by the time they reach the second big bar magnet they will once again be pointing in the right direction. Now the electrons are able to move through the second big bar magnet, and out its other end. So by turning this electric field on, the spin transistor will let current flow, and if we turn the electric field off, no current will flow. We have created an on-off switch using magnets and spin!

      That's cool, but why go through the effort of doing this when we have perfectly fine electronics already?

      The process of switching between the on and off states of these spin transistors is a lot more energy efficient than with regular transistors. These types of transistors leak a lot less too. Normal transistors will leak, meaning that a small amount of current will go through even when the transistor is off. With spin transistors, this leak is a lot smaller. This once again improves the energy efficiency of these devices. So in short, spin transistors will make your computer more energy efficient. This type of transistor can also be made smaller than normal transistors, which leads to more powerful computers.

      Feedback and interest

      As I mentioned, I wrote this post as a challenge to myself to explain modern physics to laypeople. Please let me know where I succeeded and where I failed. Also let me know if you like this type of content and if I should continue posting other similar topics in the same format.

      37 votes