-
16 votes
-
Mexican Congress holds second UFO session featuring Peruvian mummies
23 votes -
The Brain Scoop relaunch!
14 votes -
Something weird happens when you keep squeezing
19 votes -
Videoconference fatigue from a neurophysiological perspective (first neurophysiological evidence)
23 votes -
Deep in the Arctic permafrost, the Svalbard Global Seed Vault is protecting Africa's food supply
12 votes -
The story of when washing hands was considered crazy
12 votes -
Unzicker's "Real Physics": on dangers of Youtube physicists
12 votes -
In defense of the rat
14 votes -
Denmark is building on the success of blockbuster drugs – the country's focus on reinvestment is feeding a stream of discovery
7 votes -
Rats have an imagination, new research finds
57 votes -
The genetic heritage of the Denisovans may have left its mark on our mental health
16 votes -
Long presumed to have no heads at all, sea stars may be nothing but
25 votes -
A brief history of tricky mathematical tiling
10 votes -
What causes fainting? Scientists finally have an answer.
22 votes -
Scientists in Sweden have succeeded in extracting and sequencing RNA molecules from an extinct species, a century old Tasmanian tiger known as a thylacine
16 votes -
Six creatures that are actually real-life zombies
18 votes -
'Not of faculty quality': How Penn mistreated Katalin Karikó, the Nobel Prize winner of 2023
25 votes -
Maths anxiety
12 votes -
How laboratory glassware is blown in the UK
12 votes -
Future technology: Twenty-two ideas about to change our world
6 votes -
The humbling of the maths snobs
10 votes -
Researchers develop new mechanism to create water-repellent surfaces
7 votes -
Why the empty atom picture misunderstands quantum theory
22 votes -
Human microbiome myths and misconceptions
10 votes -
Can YOU win rock, paper, scissors against Grey? 99.9999999% will fail.
40 votes -
Womb transplants are now a life-changing reality. Here’s how the extraordinary procedure works.
37 votes -
Mutations matter
5 votes -
The mathematician who sculpted the shape of space - obituary for Eugenio Calabi
13 votes -
The world inside you
11 votes -
UK's nuclear fusion site (JET) ends experiments after forty years
18 votes -
Polyhedra world
8 votes -
What's your favorite dinosaur?
I'm by no means a dinosaur expert, but I'd consider myself an enthusiast. My favorite is the Carnotaurus. It's not quite as big as the classic T-Rex and has even tinier arms, but dude had bull...
I'm by no means a dinosaur expert, but I'd consider myself an enthusiast.
My favorite is the Carnotaurus. It's not quite as big as the classic T-Rex and has even tinier arms, but dude had bull horns on its noggin! And it'll still chase you down and gobble you up.
Everybody's got a favorite. And if you don't, find your poor lost inner child and ask them;
What's your favorite Dinosaur?
56 votes -
Attosecond lasers explained (2023 Nobel Prize in physics)
6 votes -
Quantum Computing Since Democritus
7 votes -
Physicists who explored tiny glimpses of time win Nobel Prize
23 votes -
Neuralink competitor Precision Neuroscience buys factory to build its brain implants
14 votes -
Jewel of the forest: New electric blue tarantula species discovered in Thailand
12 votes -
Rare 1885 photo captures the first licensed women doctors of India, Japan, and Syria
9 votes -
Inside the world of 3D sound
3 votes -
The chemistry of ‘Yes Minister’ (2017)
4 votes -
ALPHA experiment at CERN observes the influence of gravity on antimatter
24 votes -
Magnifying curiosity with a pocket microscope
9 votes -
Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a
7 votes -
New vaccine technology could protect from future viruses and variants
The vaccine antigen technology, developed by the University of Cambridge and spin-out DIOSynVax in early 2020, provided protection against all known variants of SARS-CoV-2 – the virus that causes...
The vaccine antigen technology, developed by the University of Cambridge and spin-out DIOSynVax in early 2020, provided protection against all known variants of SARS-CoV-2 – the virus that causes COVID-19 – as well as other major coronaviruses, including those that caused the first SARS epidemic in 2002.
The studies in mice, rabbits and guinea pigs [...] found that the vaccine candidate provided a strong immune response against a range of coronaviruses by targeting the parts of the virus that are required for replication.
Professor Jonathan Heeney from Cambridge’s Department of Veterinary Medicine, who led the research, [said] “We wanted to come up with a vaccine that wouldn’t only protect against SARS-CoV-2, but all its relatives.”
18 votes -
Anti-COVID drug may have led to virus mutations: study
10 votes -
Brainless jellyfish demonstrate learning ability
Veronique Greenwood In the dappled sunlit waters of Caribbean mangrove forests, tiny box jellyfish bob in and out of the shade. Box jellies are distinguished from true jellyfish in part by their...
Veronique Greenwood
In the dappled sunlit waters of Caribbean mangrove forests, tiny box jellyfish bob in and out of the shade. Box jellies are distinguished from true jellyfish in part by their complex visual system — the grape-size predators have 24 eyes. But like other jellyfish, they are brainless, controlling their cube-shaped bodies with a distributed network of neurons.
tap/click to know more...
That network, it turns out, is more sophisticated than you might assume. On Friday, researchers published a report in the journal Current Biology indicating that the box jellyfish species Tripedalia cystophora have the ability to learn. Because box jellyfish diverged from our part of the animal kingdom long ago, understanding their cognitive abilities could help scientists trace the evolution of learning.
The tricky part about studying learning in box jellies was finding an everyday behavior that scientists could train the creatures to perform in the lab.
- Roots of mangroves
Anders Garm, a biologist at the University of Copenhagen and an author of the new paper, said his team decided to focus on a swift about-face that box jellies execute when they are about to hit a mangrove root. These roots rise through the water like black towers, while the water around them appears pale by comparison. But the contrast between the two can change from day to day, as silt clouds the water and makes it more difficult to tell how far away a root is. How do box jellies tell when they are getting too close?
“The hypothesis was, they need to learn this,” Garm said. “When they come back to these habitats, they have to learn, how is today’s water quality? How is the contrast changing today?”
- Setup
In the lab, researchers produced images of alternating dark and light stripes, representing the mangrove roots and water, and used them to line the insides of buckets about six inches wide. When the stripes were a stark black and white, representing optimum water clarity, box jellies never got close to the bucket walls. With less contrast between the stripes, however, box jellies immediately began to run into them. This was the scientists’ chance to see if they would learn.
After a handful of collisions, the box jellies changed their behavior. Less than eight minutes after arriving in the bucket, they were swimming 50% farther from the pattern on the walls, and they had nearly quadrupled the number of times they performed their about-face maneuver. They seemed to have made a connection between the stripes ahead of them and the sensation of collision.
- “It’s amazing to see how fast they learn,”
Going further, researchers removed visual neurons from the box jellyfish and studied them in a dish. The cells were shown striped images while receiving a small electrical pulse to represent collision. Within about five minutes, the cells started sending the signal that would cause a whole box jellyfish to turn around.
“It’s amazing to see how fast they learn,” said Jan Bielecki, a postdoctoral researcher at the Institute of Physiology at Kiel University in Germany, also an author of the paper.
Researchers who were not involved in the study called the results a significant step forward in understanding the origins of learning. “This is only the third time that associative learning has been convincingly demonstrated in cnidarians,” a group that includes sea anemones, hydras and jellyfish, said Ken Cheng, a professor at Macquarie University in Sydney, Australia, who studies the animals. “And this is the coolest demonstration, replete with physiological data.”
The results also suggest that box jellyfish possess some level of short-term memory, because they can change their behavior based on past experience, said Michael Abrams, a postdoctoral researcher at the University of California, Berkeley, who studies the neuroscience of jellyfish sleep. He wonders how long the box jellies remember what they’ve learned. If they are taken out of the tank for an hour and then returned to it, do they have to learn what to do all over again?
Future work
In future work, researchers hope to identify which specific cells control the box jellyfish’s ability to learn from experience. Garm and his colleagues are curious about the molecular changes that happen in these cells as the animals incorporate new information into their behavior.
They wonder, too, whether the capacity to learn is universal among nerve cells, regardless of whether they are part of a brain. It might explain their peculiar persistence in the tree of life.
“There are organ systems popping up and going away all the time,” Garm said. “But nervous systems — once they are there, they very rarely go away again.”
Perhaps the ability to learn is one reason they are still here.
Seattle Times - Link to the article
9 votes -
Prehistoric fish fills 100 million year gap in evolution of the skull
8 votes -
Recent neuroscience research suggests that popular strategies to control dopamine are based on an overly narrow view of how it functions
17 votes -
Nobel disease: Exploration of how and why some of the world’s greatest scientists eventually go crazy
20 votes