-
26 votes
-
The truth about AI (specifically LLM powered AI)
The last couple of years have been a wild ride. The biggest parts of the conversation around AI for most of that time have been dominated by absurd levels of hype. To go along with the cringe...
The last couple of years have been a wild ride. The biggest parts of the conversation around AI for most of that time have been dominated by absurd levels of hype. To go along with the cringe levels of hype, a lot of people have felt the pain of dealing with the results of rushed and forced AI implementation.
As a result the pushback against AI is loud and passionate. A lot of people are pissed, for good reasons.
Because of that it would be understandable for people casually watching from a distance to get the impression that AI is mostly an investor fueled shitshow with very little real value.
The first part of the sentiment is true, it's definitely a shitshow. Big companies are FOMOing hard, everyone is shoehorning AI into everything they can in hopes of capturing some of that hype money. It feels like crypto, or Web 3.0. The result is a mess and we're nowhere near peak mess yet.
Meanwhile in software engineering the conversation is extremely polarized. There is a large, but shrinking, contingent of people who are absolutely sure that AI is something like a scam. It only looks like a valid tool and in reality it creates more problems than it solves. And until recently that was largely true. The reason that contingent is shrinking, though, is that the latest generation of SOTA models are an undeniable step change. Every day countless developers try using AI for something that it's actually good at and they have the, as yet nameless but novel, realization that "holy shit this changes everything". It's just like every other revolutionary tech tool, you have to know how to use it, and when not to use it.
The reason I bring up software engineering is that code is deterministic. You can objectively measure the results. The incredible language fluency of LLMs can't gloss over code issues. It either identified the bug or it didn't. It either wrote a thorough, valid test or it didn't. It's either good code or it isn't. And here's the thing: It is. Not automatically, or in all cases, and definitely not without careful management and scaffolding. But used well it is undeniably a game changing tool.
But it's not just game changing in software. As in software if it's used badly, or for the wrong things, it's more trouble than it's worth. But used well it's remarkable. I'll give you an example:
A friend was recently using AI to help create the necessary documents for a state government certification process for his business. If you've ever worked with government you've already imagined the mountain of forms, policies and other documentation that were required. I got involved because he ran into some issues getting the AI to deliver.
Going through his session the thing that blew my mind was how little prompting it took to get most of the way there. He essentially said "I need help with X application process for X certification" and then he pasted in a block of relevant requirements from the state. The LLM agent then immediately knew what to do, which documents would be required and which regulations were relevant. It then proceeded to run him through a short Q and A to get the necessary specifics for his business and then it just did it. The entire stack of required documentation was done in under an hour versus the days it would have taken him to do it himself. It didn't require detailed instructions or .md files or MCP servers or artifacts, it just did it.
And he's familiar with this process, he has the expertise to look at the resulting documents and say "yeah this is exactly what the state is looking for". It's not surprising that the model had a lot of government documentation in its training data, it shouldn't even really be mind blowing at this point how effective it was, but it blew my mind anyway. Probably because not having to deal with boring, repetitive paperwork is a miraculous thing from my perspective.
This kind of win is now available in a lot of areas of work and business. It's not hype, it's objectively verifiable utility.
This is not to say that it's not still a mess. I could write an overly long essay on the dangers of AI in software, business and to society at large. We thought social media was bad, that the digital revolution happened too fast for society to adapt... AI is a whole new category of problematic. One that's happening far faster than anything else has. There's no precedent.
But my public service message is this: Don't let the passionate hatred of AI give you the wrong idea: There is real value there. I don't mean this is a FOMO way, you don't have to "use AI or get left behind". The truth is that 6 months from now the combination of new generations of models and improved tooling, scaffolding and workflows will likely make the current iteration of AI look quaint by comparison. There's no rush to figure out a technology that's advancing and changing this quickly because most of what you learn right now will be about solving problems that will be solved by default in the near future.
That being said, AI is the biggest technological leap since the beginning of the public, consumer facing, internet. And I was there for that. Like the internet it will prove to be both good and bad, corporate consolidation will make the bad worse. And, like the internet, the people who are saying it's not revolutionary are going to look silly in the context of history.
I say this from the perspective of someone who has spent the past year casually (and in recent months intensively) learning how to use AI in practical ways, with quantifiable results, both in my own projects and to help other people solve problems in various domains. If I were to distill my career into one concept, it would be: solving problems. So I feel like I'm in a position to speak about problem solving technology with expertise. If you have a use for LLM powered AI, you'll be surprised how useful it is.
28 votes -
What I learned building pi, an opinionated and minimal coding agent
1 vote